

OFPOOD05E00N000

MSA and TAA 400GBase-CU OSFP-RHS to OSFP-RHS Direct Attach Cable (Passive Twinax, 0.5m, NDR)

Product Description

This is a MSA Compliant 400GBase-CU OSFP-RHS to OSFP-RHS direct attach cable that operates over passive copper with a maximum reach of 0.5m. It has been programmed, uniquely serialized, and data-traffic and application tested to ensure it is 100% compliant and functional. We stand behind the quality of our products and proudly offer a limited lifetime warranty. This cable is TAA (Trade Agreements Act) compliant and is built to comply with MSA (Multi-Source Agreement) standards.

Skylane's transceivers are RoHS compliant and lead-free.

Features:

- OSFP-RHS Module Compliant to OSFP MSA
- Enable 400Gbps to 400Gbps Transmission (4x100G, CH1- CH4)
- Transmission Data Rate Up to PAM4 106.25Gbps Per Channel
- Operating Temperature Range: 0 to 70 Celsius
- RoHS Compliant and Lead-Free
- Built-In EEPROM Functions

Applications:

400GBase Ethernet

ESD

For your product safety, please read the following information carefully before any manipulation of the transceiver:

LASER SAFETY

This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module.

General Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit
Storage Temperature	Tstg	-40		85	°C
Operating Case Temperature	Тс	0		70	°C
Supply Voltage	Vcc	3.13	3.3	3.47	V
Relative Operating Humidity	RH	5		85	%
Data Rate	DR		400		Gbps

Physical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Length	L			0.5	Μ	
AWG			28		AWG	
Jacket Material		Plastic Braided Mesh Technology Net, Silver Gray				

Electrical Specifications

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Resistance	Rcon			3	Ω	
Insulation Resistance	Rins			10	MΩ	
Raw Cable Impedance	Zca	95		110	Ω	
Mated Connector Impedance	Zmated	85		115	Ω	
Maximum Insertion Loss @26.56GHz	SDD21	11		19.75	dB	
Differential to Common- Mode Return Loss	SDD11/ 22	RLcd(f) ≥ {	$22 - 10(f/26.56)$ $0.05 \le$ $15 - 3(f/26.76)$ 26.56	f < 26.56 5 ≤ f ≤40	dB	1
Differential to Common- Mode Conversion Loss	SCD11/ 22	Conversion_loss(f)	$- \begin{cases} 10 & 0.\\ 14 - 0.3108f & 1 \end{cases}$	$05 \le f < 12.89$ $2.89 \le f \le 40$	dB	1
Common-Mode to Common-Mode Return Loss	SCD21- SDD21	RLcc(f) ≥ 1.08			dB	1
Minimum COM	COM	3			dB	

Notes:

1. For $0.05 \le f \le 40$ GHz, where f is the frequency in GHz.

Pin	Symbol	Name/Description	Logic	Plug Sequence	Direction	Notes
1	GND	Module Ground.		1		
2	Tx2+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
3	Tx2-	Transmitter Data Inverted.	CML-I	3	Input from Host	
4	GND	Module Ground.		1		
5	Tx4+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
6	Tx4-	Transmitter Data Inverted.	CML-I	3	Input from Host	
7	GND	Module Ground.		1		
8	Tx6+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
9	Tx6-	Transmitter Data Inverted.	CML-I	3	Input from Host	
10	GND	Module Ground.		1		
11	Tx8+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
12	Tx8-	Transmitter Data Inverted.	CML-I	3	Input from Host	
13	GND	Module Ground.		1		
14	SCL	2-Wire Serial Interface Clock.	LVCMOS-I/O	3	Bi-Directional	1
15	Vcc	+3.3V Power.		2	Power from Host	
16	Vcc	+3.3V Power.		2	Power from Host	<u> </u>
17	LPWn/PRSn	Low-Power Mode/Module Present.	Multi-Level	3	Bi-Directional	2
18	GND	Module Ground.		1		
19	Rx7-	Receiver Data Inverted.	CML-O	3	Output from Host	
20	Rx7+	Receiver Data Non-Inverted.	CML-O	3	Output from Host	<u> </u>
21	GND	Module Ground.		1		
22	Rx5-	Receiver Data Inverted.	CML-O	3	Output from Host	
23	Rx5+	Receiver Data Non-Inverted.	CML-O	3	Output from Host	
24	GND	Module Ground.		1		
25	Rx3-	Receiver Data Inverted.	CML-O	3	Output from Host	
26	Rx3+	Receiver Data Non-Inverted.	CML-O	3	Output from Host	
27	GND	Module Ground.		1		
28	Rx1-	Receiver Data Inverted.	CML-O	3	Output from Host	
29	Rx1+	Receiver Data Non-Inverted.	CML-O	3	Output from Host	
30	GND	Module Ground.		1		<u> </u>
31	GND	Module Ground.		1		
32	Rx2+	Receiver Data Non-Inverted.	CML-O	3	Output from Host	
33	Rx2-	Receiver Data Inverted.	CML-O	3	Output from Host	
34	GND	Module Ground.		1		
35	Rx4+	Receiver Data Non-Inverted.	CML-O	3	Output from Host	

Pin Descriptions

36	Rx4-	Receiver Data Inverted.	CML-O	3	Output from Host	
37	GND	Module Ground.		1		
38	Rx6+	Receiver Data Non-Inverted.	CML-O	3	Output from Host	
39	Rx6-	Receiver Data Inverted.	CML-O	3	Output from Host	
40	GND	Module Ground.		1		
41	Rx8+	Receiver Data Non-Inverted.	CML-O	3	Output from Host	
42	Rx8-	Receiver Data Inverted.	CML-O	3	Output from Host	
43	GND	Module Ground.		1		
44	INT/RSTn	Module Interrupt/Module Reset.	Multi-Level	3	Bi-Directional	2
45	Vcc	+3.3V Power.		2	Power from Host	
46	Vcc	+3.3V Power.		2	Power from Host	
47	SDA	2-Wire Serial Interface Data.	LVCMOS-I/O	3	Bi-Directional	1
48	GND	Module Ground.		1		
49	Tx7-	Transmitter Data Inverted.	CML-I	3	Input from Host	
50	Tx7+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
51	GND	Module Ground.		1		
52	Tx5-	Transmitter Data Inverted.	CML-I	3	Input from Host	
53	Tx5+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
54	GND	Module Ground.		1		
55	Tx3-	Transmitter Data Inverted.	CML-I	3	Input from Host	
56	Tx3+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
57	GND	Module Ground.		1		
58	Tx1-	Transmitter Data Inverted.	CML-I	3	Input from Host	
59	Tx1+	Transmitter Data Non-Inverted.	CML-I	3	Input from Host	
60	GND	Module Ground.		1		

Notes:

- 1. Open-drain with pull-up resistor on the host.
- 2. See Pin Assignment below for the required circuit.

Pin Assignment

Wiring Diagram

P1			P2		
GND	01		31	GND	
TX2p	02		32	RX2p	
TX2n	03		- 33	RX2n	
GND	04		34	GND	
TX4p	05		- 35	RX4p	
TX4n	06		► 36	RX4n	
GND	07		37	GND	
GND	24		54	GND	
RX3n	25	-	- 55	TX3n	
RX3p	26	-	- 56	тхзр	
GND	27		57	GND	
RX1n	28	-	- 58	TX1n	
RX1p	29	-	- 59	TX1p	
GND	30		60	GND	
GND	31		01	GND	
RX2p	32	-	- 02	TX2p	
RX2n	33	-	- 03	TX2n	
GND	34		04	GND	
RX4p	35	-	- 05	ТХ4р	
RX4n	36	-	- 06	TX4n	
GND	37		07	GND	
GND	54		24	GND	
TX3n	55		25	RX3n	
ТХЗр	56		26	RX3p	
GND	57		27	GND	
TX1n	58	i	28	RX1n	
TX1p	59		29	RX1p	
GND	60		30	GND	

Bottom Side (viewed from bottom)

Mechanical Specifications

Bending Radius

Wire Gauge	OD (Ref.)	Bend Radius "R"	Min. Bend Radius "L"
28AWG	7.0mm	14mm	60mm

About Skylane Optics

Skylane is a leading provider of transceivers for optical communication.

We offer an extensive portfolio for the enterprise, access, datacenter and metropolitan fiber optical market as well as for smart home applications and home networks.

We cover the European, South American and North American market with a strong partner network and have offices in Belgium, Brazil, Sweden and USA.

Our offerings are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions.

We offer an extensive range of high-quality products including transceivers (Optical and copper), Active Optical Cable (AOC), Direct Attach Cable (DAC), Mux/Demux, Coding Box.

