

QAP13002D0RD000

MSA and TAA 200GBase-PSM8 QSFP-DD Transceiver (SMF, 1310nm, 2km, MPO-24, DOM)

Product Description

This MSA Compliant QSFP-DD transceiver provides 200GBase-PSM8 throughput up to 2km over single-mode fiber (SMF) using a wavelength of 1310nm via an MPO-24 connector. It is built to MSA standards and is uniquely serialized and data-traffic and application tested to ensure that they will integrate into your network seamlessly. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. This transceiver is Trade Agreements Act (TAA) compliant. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Skylane's transceivers are RoHS compliant and lead-free.

Features:

- 8 Channels 1310nm DFB
- 8 Channels Full-Duplex Transceiver Modules
- Supports 8x25Gbps and 8x10Gbps Aggregate Bit Rates
- Internal CDR Circuits on Both Receiver and Transmitter Channels
- Supports CDR Bypass
- 8 Channels PIN Photo Detector Array
- Up to 2km Reach for G.652 SMF
- 3.3V Power Supply Voltage
- Operating Temperature: 0 to 70 Celsius
- Hot Pluggable QSFP-DD Form Factor
- RoHS Compliant and Lead-Free

Applications:

• 200G Ethernet

For your product safety, please read the following information carefully before any manipulation of the transceiver:

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module.

LASER SAFETY

This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	-0.3		3.6	V	
Input Voltage	VIN	-0.3		Vcc+0.3	V	
Storage Temperature	Tstg	-20		85	°C	
Operating Case Temperature	Тс	0		70	°C	
Relative Humidity (Non-Condensing)	RH	5		95	%	
Data Rate	DR	10.3125	25.78125		Gbps	
Fiber Bend Radius	FBR	0.002		2	km	

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	Vcc	3.13	3.3	3.47	V	
Power Dissipation	P _{DISS}		5.28	6	W	
Differential Input Impedance	ZIN	90	100	110	Ω	
Differential Output Impedance	ZOUT	90	100	110	Ω	
Differential Input Voltage Amplitude	ΔVIN	190		700	mVp-p	1
Differential Output Voltage Amplitude	ΔVOUT	300		850	mVp-p	2
Input Logic Level - High	VIH	2.0		Vcc	V	
Input Logic Level - Low	VIL	0		0.8	V	
Output Logic Level - High	VOH	Vcc-0.5		Vcc	V	
Output Logic Level - Low	VOL	0		0.4	V	

Notes:

- 1. Differential input voltage amplitude is measured between Tx#+ and Tx#-.
- 2. Differential output voltage amplitude is measured between Rx#+ and Rx#-.

Optical Characteristics

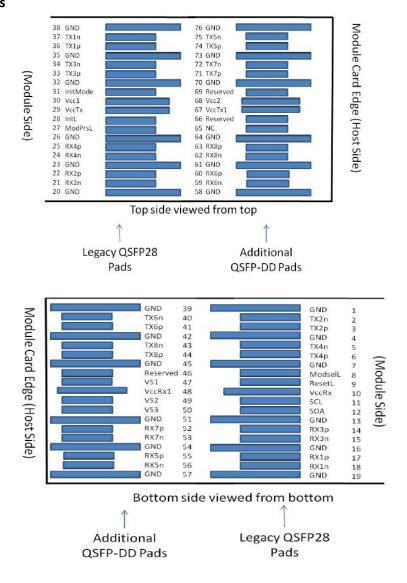
Parameter Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Transmitter						
	10	4005	4240	4005		
Center Wavelength	λC	1295	1310	1325	nm	
Side-Mode Suppression Ratio	SMSR	30			dB	
Average Launch Power Per Lane	Pavg	-6		2	dBm	
Optical Modulation Amplitude Per Lane	POMA	-5.0		2.2	dBm	
TDP Per Lane	TDP			2.9	dB	
Extinction Ratio	ER	3.5			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	
Optical Return Loss Tolerance	TOL			20	dB	
Transmitter Reflectance	RT			-12	dB	
Average Launch Power of Off Transmitter Per Lane	Poff			-30	dB	
Eye Mask Coordinates: (X1, X2, X3, Y1, Y2, Y3)	(0.31, 0.4, 0.45, 0.34, 0.38, 0.4) Hit Ratio = 5x10 ⁻⁵					
Receiver						
Center Wavelength	λC	1295	1310	1325	nm	
Damage Threshold Per Lane	THd	3.0			dBm	
Average Receive Power Per Lane		-12.66		2.0	dBm	
Maximum Receive Power Per Lane (OMA)				2.2	dBm	
Receiver Reflectance	RR			-26	dBm	
Receiver Sensitivity (OMA) Per Lane	SEN			-11.35	dBm	
LOS Assert	LOSA		-18		dBm	
LOS De-Assert – OMA	LOSD		-15		dBm	
LOS Hysteresis	LOSH	0.5		3	dB	

Notes:

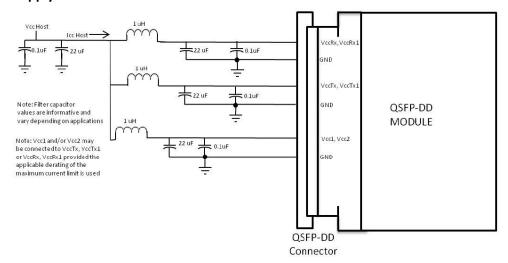
- 1. Even if the TDP<1dB, the OMA minimum must exceed the minimum value specified here.
- 2. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.
- 3. Sensitivity is specified at 5x10⁻⁵ BER @25.78125Gbps.

Pin Descriptions

Pin	Symbol	Logic	Name/Description	Plug Sequence	Notes
1	GND		Module Ground.	1B	1
2	Tx2-	CML-I	Transmitter Inverted Data Input.	3B	
3	Tx2+	CML-I	Transmitter Non-Inverted Data Input.	3B	
4	GND		Module Ground.	1B	1
5	Tx4-	CML-I	Transmitter Inverted Data Input.	3B	
6	Tx4+	CML-I	Transmitter Non-Inverted Data Input.	3B	
7	GND		Module Ground.	1B	1
8	ModSelL	LVTTL-I	Module Select.	3B	
9	ResetL	LVTTL-I	Module Reset.	3B	
10	VccRx		+3.3V Receiver Power Supply.	2B	2
11	SCL	LVCMOS-I/O	2-Wire Serial Interface Clock.	3B	
12	SDA	LVCMOS-I/O	2-Wire Serial Interface Data.	3B	
13	GND		Module Ground.	1B	1
14	Rx3+	CML-O	Receiver Non-Inverted Data Input.	3B	
15	Rx3-	CML-O	Receiver Inverted Data Input.	3B	
16	GND		Module Ground.	1B	1
17	Rx1+	CML-O	Receiver Non-Inverted Data Input.	3B	
18	Rx1-	CML-O	Receiver Inverted Data Input.	3B	
19	GND		Module Ground.	1B	1
20	GND		Module Ground.	1B	1
21	Rx2-	CML-O	Receiver Inverted Data Input.	3B	
22	Rx2+	CML-O	Receiver Non-Inverted Data Input.	3B	
23	GND		Module Ground.	1B	1
24	Rx4-	CML-O	Receiver Inverted Data Input.	3B	
25	Rx4+	CML-O	Receiver Non-Inverted Data Input.	3B	
26	GND		Module Ground.	1B	2
27	ModPrsL	LVTTL-O	Module Present.	3B	2
28	IntL	LVTTL-O	Interrupt.	3B	
29	VccTx		+3.3V Transmitter Power Supply.	2B	1
30	Vcc1		+3.3V Power Supply.	2B	
31	InitMode	LVTTL-I	Initialization Mode. In legacy QSFP applications, the InitMode pad is called LPMODE.	3B	
32	GND		Module Ground.	1B	1
33	Tx3+	CML-I	Transmitter Non-Inverted Data Input.	3B	
34	Tx3-	CML-I	Transmitter Inverted Data Input.	3B	
35	GND		Module Ground.	1B	1
36	Tx1+	CML-I	Transmitter Non-Inverted Data Input.	3B	

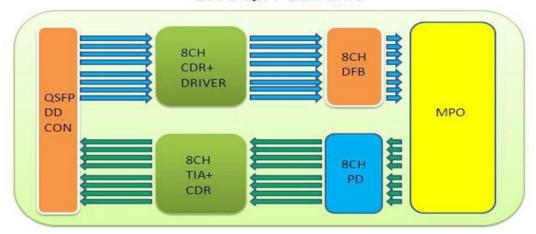

37	Tx1-	CML-I	Transmitter Inverted Data Input.	3B	
38	GND		Module Ground.	1B	1
39	GND		Module Ground.	1A	1
40	Tx6-	CML-I	Transmitter Inverted Data Input.	3A	
41	Tx6+	CML-I	Transmitter Non-Inverted Data Input.	3A	
42	GND		Module Ground.	1A	1
43	Tx8-	CML-I	Transmitter Inverted Data Input.	3A	
44	Tx8+	CML-I	Transmitter Non-Inverted Data Input.	3A	
45	GND		Module Ground.	1A	1
46	Reserved		For Future Use.	3A	3
47	VS1		Module Vendor-Specific 1.	3A	3
48	VccRx1		+3.3V Receiver Power Supply.	2A	2
49	VS2		Module Vendor-Specific 2.	3A	3
50	VS3		Module Vendor-Specific 3.	3A	3
51	GND		Module Ground.	1A	1
52	Rx7+	CML-O	Receiver Non-Inverted Data Input.	3A	
53	Rx7-	CML-O	Receiver Inverted Data Input.	3A	
54	GND		Module Ground.	1A	1
55	Rx5+	CML-O	Receiver Non-Inverted Data Input.	3A	
56	Rx5-	CML-O	Receiver Inverted Data Input.	3A	
57	GND		Module Ground.	1A	1
58	GND		Module Ground.	1A	1
59	Rx6-	CML-O	Receiver Inverted Data Input.	3A	
60	Rx6+	CML-O	Receiver Non-Inverted Data Input.	3A	
61	GND		Module Ground.	1A	1
62	Rx8-	CML-O	Receiver Inverted Data Input.	3A	
63	Rx8+	CML-O	Receiver Non-Inverted Data Input.	3A	
64	GND		Module Ground.	1A	1
65	NC		Not Connected.	3A	3
66	Reserved		For Future Use.	3A	3
67	VccTx1		+3.3V Transmitter Power Supply.	2A	2
68	Vcc2		+3.3V Power Supply.	2A	2
69	Reserved		For Future Use.	3A	3
70	GND		Module Ground.	1A	1
71	Tx7+	CML-I	Transmitter Non-Inverted Data Input.	3A	
72	Тх7-	CML-I	Transmitter Inverted Data Input.	3A	
73	GND		Module Ground.	1A	1
74	Tx5+	CML-I	Transmitter Non-Inverted Data Input.	3A	

75	Tx5-	CML-I	Transmitter Inverted Data Input.	3A	
76	GND		Module Ground.	1A	1

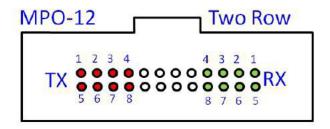

Notes:

- 1. QSFP-DD uses common ground (GND) for all signals and supply power. All are common within the QSFP-DD module, and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.
- 2. VccRx, VccRx1, Vcc1, Vcc2, VccTx, and VccTx1 shall be applied concurrently. VccRx, VccRx1, Vcc1, Vcc2, VccTx, and VccTx1 may be internally connected within the module in any combination. The connector Vcc pins are each rated for a maximum current of 100mA.
- 3. All Vendor-Specific, Reserved, and Not Connected pins may be terminated with 50Ω to ground on the host. Pad 65 (Not Connected) shall be left unconnected within the module. Vendor-Specific and Reserved pads shall have an impedance to GND that is greater than $10k\Omega$ and less than 100pF.
- 4. Plug Sequence specifies the mating sequence of the host connector and module. The sequence is 1A, 2A, 3A, 1B, 2B, and 3B. Contact Sequence A will make, then break contact with additional QSFP-DD pads. Sequence 1A, 1B will then occur simultaneously, followed by 2A, 2B, and by 3A, 3B.

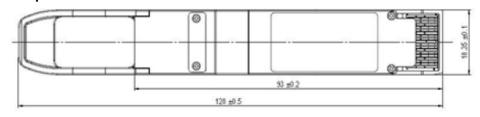
Electrical Pin-Out Details

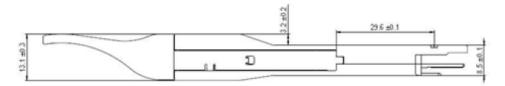


Recommended Supply Filter



Block Diagram


200G QSFP DD PSM8



Optical Interface Lanes and Assignments

Mechanical Specifications

About Skylane Optics

Skylane is a leading provider of transceivers for optical communication.

We offer an extensive portfolio for the enterprise, access, datacenter and metropolitan fiber optical market as well as for smart home applications and home networks.

We cover the European, South American and North American market with a strong partner network and have offices in Belgium, Brazil, Sweden and USA.

Our offerings are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions.

We offer an extensive range of high-quality products including transceivers (Optical and copper), Active Optical Cable (AOC), Direct Attach Cable (DAC), Mux/Demux, Coding Box.

